Role of a Novel I1781T Mutation and Other Mechanisms in Conferring Resistance to Acetyl-CoA Carboxylase Inhibiting Herbicides in a Black-Grass Population

نویسندگان

  • Shiv Shankhar Kaundun
  • Sarah-Jane Hutchings
  • Richard P. Dale
  • Eddie McIndoe
چکیده

BACKGROUND Knowledge of the mechanisms of herbicide resistance is important for designing long term sustainable weed management strategies. Here, we have used an integrated biology and molecular approach to investigate the mechanisms of resistance to acetyl-CoA carboxylase inhibiting herbicides in a UK black-grass population (BG2). METHODOLOGY/PRINCIPAL FINDINGS Comparison between BG2 phenotypes using single discriminant rates of herbicides and genotypes based on ACCase gene sequencing showed that the I1781L, a novel I1781T, but not the W2027C mutations, were associated with resistance to cycloxydim. All plants were killed with clethodim and a few individuals containing the I1781L mutation were partially resistant to tepraloxydim. Whole plant dose response assays demonstrated that a single copy of the mutant T1781 allele conferred fourfold resistance levels to cycloxydim and clodinafop-propargyl. In contrast, the impact of the I1781T mutation was low (Rf = 1.6) and non-significant on pinoxaden. BG2 was also characterised by high levels of resistance, very likely non-target site based, to the two cereal selective herbicides clodinafop-propargyl and pinoxaden and not to the poorly metabolisable cyclohexanedione herbicides. Analysis of 480 plants from 40 cycloxydim resistant black grass populations from the UK using two very effective and high throughput dCAPS assays established for detecting any amino acid changes at the 1781 ACCase codon and for positively identifying the threonine residue, showed that the occurrence of the T1781 is extremely rare compared to the L1781 allele. CONCLUSION/SIGNIFICANCE This study revealed a novel mutation at ACCase codon position 1781 and adequately assessed target site and non-target site mechanisms in conferring resistance to several ACCase herbicides in a black-grass population. It highlights that over time the level of suspected non-target site resistance to some cereal selective ACCase herbicides have in some instances surpassed that of target site resistance, including the one endowed by the most commonly encountered I1781L mutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance of various biotypes of Canary grass (phalaris. Spp) to acetyl-CoA carboxylase-inhibiting herbicides.

Little seed canary grass (Phalaris minor L.) is a major weed in wheat fields in some parts of Iran. To evaluate the efficacy of molecular and greenhouse methods in detecting the resistance of 49 biotypes of canary grass(Phalaris. Spp) to acetyl-CoA carboxylase-inhibiting herbicides, two methods including whole plant screening and PCR-based molecular methods were applied. Results showed that the...

متن کامل

A Novel W1999S Mutation and Non-Target Site Resistance Impact on Acetyl-CoA Carboxylase Inhibiting Herbicides to Varying Degrees in a UK Lolium multiflorum Population

BACKGROUND Acetyl-CoA carboxylase (ACCase) inhibiting herbicides are important products for the post-emergence control of grass weed species in small grain cereal crops. However, the appearance of resistance to ACCase herbicides over time has resulted in limited options for effective weed control of key species such as Lolium spp. In this study, we have used an integrated biological and molecul...

متن کامل

Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population.

The molecular basis of an acetyl-CoA carboxylase (ACCase) target-based resistant Lolium rigidum population (WLR 96) was studied here. The carboxyl-transferase domain of the plastidic ACCase gene from resistant individuals was amplified by PCR and sequenced. The DNA sequences were aligned and compared with a susceptible population. Six amino acid substitutions were identified in the resistant po...

متن کامل

DNA Analysis of Herbarium Specimens of the Grass Weed Alopecurus myosuroides Reveals Herbicide Resistance Pre-Dated Herbicides

Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium...

متن کامل

Determination of Ploidy Level and Isolation of Genes Encoding Acetyl-CoA Carboxylase in Japanese Foxtail (Alopecurus japonicus)

Ploidy level is important in biodiversity studies and in developing strategies for isolating important plant genes. Many herbicide-resistant weed species are polyploids, but our understanding of these polyploid weeds is limited. Japanese foxtail, a noxious agricultural grass weed, has evolved herbicide resistance. However, most studies on this weed have ignored the fact that there are multiple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013